Blockchain Security:
From Curves to Contracts

Dr. Jimmy Chen, IKV & NTU
Alex Liu, AMIS & MaiCoin

HITCON Pacific 2016

Aspects of Security

e ECDSA for Transaction Signing (including hardware signing)
* Hash Function Collision Resistance

* Privacy Preserving Features (Zero-Knowledge Proofs)

* Consensus Algorithms

* Smart Contract Correctness

Introduction to Blockchain

"B, HITEESHE - +ER 200 BEETIIFEER

rEEE|85EE 0162045108 000| 48 AnEE 29t | 6+ [FE) EES {1298

BRABREIEESRTHRINE S ESE4NBIRER (blockchain) BEEERIEAIRIE (credit default swap, CDS) 15
L WERBESERRERMET RERATILEHL » HRTEATASBHAE THEASEZRRTSIEBDERR+EE)

200 S{@RTIIE - Source: http://technews.tw/2016/04/10/blockchain-applied-on-wall-street

http://technews.tw/2016/04/10/blockchain-applied-on-wall-street
http://technews.tw/2016/04/10/blockchain-applied-on-wall-street
http://technews.tw/2016/04/10/blockchain-applied-on-wall-street
http://technews.tw/2016/04/10/blockchain-applied-on-wall-street
http://technews.tw/2016/04/10/blockchain-applied-on-wall-street
http://technews.tw/2016/04/10/blockchain-applied-on-wall-street
http://technews.tw/2016/04/10/blockchain-applied-on-wall-street
http://technews.tw/2016/04/10/blockchain-applied-on-wall-street
http://technews.tw/2016/04/10/blockchain-applied-on-wall-street

Eﬁ%ﬂ%

£®MAT (Fintech) KWW » "E1E#E , (Blockchain) HITEM SRR » A2

105@@%7&%%ﬁ% =ZBE

IH

B TP —— T
= == 50 S el

ST OoNE ==
- = e — ==

'lﬁ

(Sberbank) Bl

i

£% , (Bitcoin Foundation) 2 £ Brock Pierce 81225 » STRBLEHE=S VB2 -

Source: http://finance.technews.tw/2016/04/12/blockchain-bank-fintech

Andrey Sharov DBEEERITOIEE 2026 FREARERBEMEZEA

http://finance.technews.tw/2016/04/12/blockchain-bank-fintech
http://finance.technews.tw/2016/04/12/blockchain-bank-fintech
http://finance.technews.tw/2016/04/12/blockchain-bank-fintech
http://finance.technews.tw/2016/04/12/blockchain-bank-fintech
http://finance.technews.tw/2016/04/12/blockchain-bank-fintech

AR - R OIAE T AR IR B 1T ?

Posted on 2016-10-11 in #+:

ZHE B MEBEESFAERNEY ATEERRELLEA—RIKTE

HINEEE EEEHTET SARMEE S DARPA EELESNAXZHHIERBOHE 8B
BENE HRERBHEERESESERR L REHE VEREEESEFEE BRREYHES
RPAEAEET] -

S£ 9 A » DARPA #—EE 180 B=TI&EHRFER T Galois 1 Guardtime » B892
Guardtime EREREBEH T RAY KSI (Keyless Signature Infrastructure » Efj e SR ERBZE) &
SGO] SEE -

Hd , Galois #0724 "2 EE35 (Formal Verification,) 1 BB ETE - 2R "R B&E L 8l
ol PIE A - BB ERERRE SBE—EARGAFEEEGHRE BFCEEEIELEEY -

M KSI 2% T ZEESR/BRAKE DA APT (Advanced Persistent Threat » 5 RIFE 4 E 2)
EHRR BT REPHERIRF MK - IBEEZEOAREREE - Bl R2HBZ G - EE
THENARE . BERZBBHN - HeEiEGEZRX -

Source: https://kknews.cc/tech/m4kmbp.html

III'

T
L

https://kknews.cc/tech/m4kmbp.html
https://kknews.cc/tech/m4kmbp.html

“H

10

Name

8]

o

=

é‘}

@

W

Bitcoin

Ethereum

Ripple

Litecoin

Monero

Ethereum Classic

Dash

Augur

NEM

Steem

Market Cap

$11,948,455,567

$746,027,099

$241,311,150

$189,444,765

$120,361,168

$64,692,082

$61,607,874

$40,433,800

$33,509,790

$33,372,176

Price

$746.00

$8.63

$0.006726

$3.89

$8.95

$0.748783

$8.91

$3.68

$0.003723

$0.149211

Available Supply

16,016,675 BTC

86,480,755 ETH

35,876,617,244 XRP *

48,677,929 LTC

13,451,512 XMR

86,397,504 ETC

6,917,337 DASH

11,000,000 REP *

8,999,999,999 XEM *

223,657,610 STEEM

http://coinmarketcap.com

Volume (24h)

$83,764,900

$10,631,100

$1,488,910

$1,867,220

$10,951,000

$392,006

$646,805

$116,734

$12,652

$92,366

% Change (24h)

1.37%

5.27%

-0.83%

0.32%

17.30%

0.08%

0.90%

0.74%

-0.51%

-9.52%

Price Graph (7d)

http://coinmarketcap.com/

Elliptic Curve ##F] ¢ 4

* The rich and deep theory of Elliptic Curves has been studied by
mathematicians over 150 years

* Elliptic Curve overR:y*=x3+ax+b

2 3 3 =
t =X — A J
IPC I PR i

Point Addition Point Doubling

Image Courtesy: http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography

http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography
http://www.embedded.com/design/safety-and-security/4396040/An-Introduction-to-Elliptic-Curve-Cryptography

Curves over Prime Fields F #cf8 b ed &

Addition:

(X3/ y3) = (X]_) yl) + (X21 y2)
Doubling:

(X31 y3) = [2] (X1; y1)

S=A

Y27 Y1 mod D (addition)
X, =X
2
3% +a mod p (doubling)
2y,

2
X;=S"—X —X, modp

Y3 =

S(X, = X;) =y, mod p

¥

22
21
20
14
18
17
16
14
14
13
12
11
10

]

= k2L 3] 0

+3G

1G
DG

.]
28G

246G 25G, 136G
G
HZSG i
196G
4
7
5¢
i
Gt I:l
2
pAGT |
26
5.6)
. 1G] 5
26 i
G 1
T7(6G T Tlsg

0 123456789 10111213141516171819202122 ¥

¥ =x3+5x+1 over F23
30 solutions

The Curve used by Bitcoin and Ethereum

The elliptic curve domain parameters over [, associated with a Koblitz curve secp256k1 are specified
by the sextuple T = (p.a.b, G.n. h) where the finite field [, 1s defined by:

_ 2256 232 29 28 2" 26 24 1

The curve E:|y* —x° +ax+ b bver [F 1s defined by:

a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

b = 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000007

rEl & 3 secp256kl
https://en.bitcoin.it/wiki/Secp256k1

The base point G in compressed form is:

G = 02 7T9BE66TE FODCBBAC 55406295 CE870B07 029BFCDB 2DCE28D9

69F2815B 16F81798

and in uncompressed form 1is:
G = 04 79BE667E FODCBBAC 55406295 CE870BO7 029BFCDB 2DCE28D9
59F2815B 16F81798 483ADATT7 26A3C465 5DA4AFBFC OE1108A8 FD17B448
A6855419 9C47DOSF FB10D4B3

Finally the order » of G and the cofactor are:

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCEG AF4A8A03B BFD25E8C 256-bit prime
D0364141
h = 01

10

https://en.bitcoin.it/wiki/Secp256k1
https://en.bitcoin.it/wiki/Secp256k1

Key Pairs % 4% %7

* The base point G is fixed on the given Elliptic Curve

* P=[m]G
* Given m, it is easy and fast to find the point P
* Using “double and add” for scalar multiplication
* Given P, it is extremely hard to find the integer m
* Elliptic Curve Discrete Logarithm Problem (##/F] & 4t &5 % #c A 47)
 Arandomly generated integer m is a private key
* A private key is used to sign Bitcoin transactions with ECDSA
* The point P is the public key corresponding to m
* A public key is used by other nodes to verify Bitcoin transactions
* A Bitcoin address is the hash value of a public key P

Transaction

Bitcoin Transactions < %

Transaction

Transaction

Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key
Hash Hash Hash
4' Vens, | i' Verys, . 4'
Owner O's Owner 1's Owner 2's
Signature v Signature v Signature
s o
O o
Owner 1's Owner 2's Owner 3's
Private Key Private Key Private Key

http://bitcoin.org/bitcoin.pdf ¥ * B

Must be protected very well!!!

12

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Hash Functions #2;% 3k

* An efficient function mapping binary strings of arbitrary length to

binary strings of fixed length, called the hash-value or hash-code
(also fingerprint or checksum)

K onstructions for hash functions based on a block
|l|-'l e -Tlu'lni where the size nf the ' ash co
5 u|lm| to the |l'ul ‘ '-'l "'I ~:fl||o hlock « ||||ul and
ul«'lv thw L-", Slze 15 AP :-\I!l..ctl'lk u|l|n| o "- \
PR '~'| »," \ o wral lun‘ol 15 lnl-'-n‘llnl and 1
t is shown that this model covers 9 schemes that
have appeared in the literature. Within this gend — _
al model 64 possible schemes exist, and it is showy]l ‘ ‘_):39'__)1568
khat 12 of these are secure; they can be reduced to 3 ' - -
lasses based on linear transformations of variables
[T he properties of these 12 schemes with respect t
weaknesses of the underlying block cipher are stud
od T7|- SAnu .<|i||hm-'| cal b oxte -‘?nl o -IIM.
keved hash functions (MACs) based on block «
phers and hash functions

Cryptographic Hash Functions & £ 2% & #k

* H Is a function with one-way property =9 X =7 =2
(pre-image resistance) if given any vy, it is J
computationally infeasible to find any value
X In the domain of H such that H(x) =y L\j

h

* H is collision free (resistant) if it is
computationally infeasible to find x' = x
such that H(x') = H(x)

 H is a cryptographic hash function if
* H has one-way property preimage resistance collision resistance
* H is collision free

h(x) h(x1) = h(x2)

SHA: Secure Hash Algorithm

* Cryptographic hash functions published by the National Institute of Standards
and Technology (NIST) as a U.S. Federal Information Processing Standard (FIPS)

. . Output size Internal state Block size Bitwise . .
Algorithm and variant (bits) size (bits) (bits) Rounds operations Security (bits)

and, or, add, Theoretical

SHA-1 FIPS 180 160 160 512 80 oI, T attack (251)
SHA-224 224 256 512 64 and, or, xor, 112
SHA-256 |Bitcoin 256 (8 x 32) shr, rot, add 128
SHA-2 sHp 384 384 192
Fps 180 SHA-512 512 512 1024 30 and, or, xor, 256
SHA-512/224 224 (8x64) shr, rot, add 112
SHA-512/256 256 128
SHA3-224 224 1152 112

SHA-3 Ethereum

SHA3-256 | (xeccak 256) 256 1600 loss and, xor, 128
eps 202 SHA3-384 384 (5x5x64) 832 26 (10 192
SHA3-512 512 576 256

https://en.wikipedia.org/wiki/Secure Hash Algorithm

https://en.wikipedia.org/wiki/Secure_Hash_Algorithm

Merkle Tree / Hash Tree

Merkle

H(Y[O])I

H(Y[1])

H(Y[2])

H(Y[3])

H(Y[4])

H(Y[S])

H(Y[6])|

H(Y[7])I

http://commons.wikimedia.org/wiki/File:MerkleTreel.jpg

16

http://commons.wikimedia.org/wiki/File:MerkleTree1.jpg
http://commons.wikimedia.org/wiki/File:MerkleTree1.jpg

Block Chain

Longest Proof-of-Work Chain

Block Header

—® Prev Hash

Nonce

Mining 7 7%

Block Header

Merkle Root

> Prev Hash

Block Header

Merkle Root

“

HashO1

r

N

| Hash23

Hash?2

http://bitcoin.org/bitcoin.pdf ¢ = B2

» Prev Hash

Nonce

Merkle Root

/ \ Merkle Branch for Tx3

17

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Cryptowise Security

ECDSA: Choice of Two Curves
* Secp256k1 (Bitcoin and Ethereum)

p = OXFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F
a=2=0
b=17
Gx = 0x79BE667E FO9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798
Gy = O0x483ADA77 26A3C465 5DA4FBFC 0OE1108A8 FD17B448 A6855419 9C47D08F FB10D4BS8
n = O0XFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141

e Secp256rl1 (NIST P-256; parameters chosen by NSA)

p = OXFFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFF
a = -3

b = 0x5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53BOF6 3BCE3C3E 27D2604B
Gx = 0x6Bl17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 F4A13945 D898C296
Gy O0xX4FE342E2 FE1A7F9B 8EE7EB4A 7COF9E16 2BCE3357 6B315ECE CBB64068 37BF51F5
n = OXFFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2 FC632551

Source: http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html

http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html
http://blog.enuma.io/update/2016/11/01/a-tale-of-two-curves-hardware-signing-for-ethereum.html

Possible Back Doors (per IEEE P1363)

» NIST publishes s where b is (basically) SHA-1(s)
» Situation where this provides protection:

» NSA knows a rare ECC weakness: a few weak curves
y2=x3—-3x+b
» NSA doesn't know how to invert SHA-1

» But what if NSA knows a weakness in many curve
choices?

» e.g., 1/1000000000 of all curves
» NSA searches many choices of s until finding a weak
curve

Source: Bernstein, Daniel J., Lange, Tanja, “Security Dangers of the NIST Curves.”

20

ECDSA Signing & &

Parameter

CURVE the elliptic curve field and equation used

G elliptic curve base point, a generator of the elliptic curve with large prime order n
n integer order of G, means that n % (7 = O

Suppose Alice wants to send a signed message to Bob. Initially, they must agree on the curve parameters
(CUR VE.G, n). In addition to the field and equation of the curve, we need (7, a base point of prime order
on the curve; 11 is the multiplicative order of the point (5.

Alice creates a key pair, consisting of a[private key integer ¢/ 4 randomly selected in the interval [1 .n— 1]; and
a jpublic key curve point Q g = d q * (7| We use % to denote elliptic curve point multiplication by a scalar.

For Alice to sign a message m, she follows these steps:

Calculate ¢ = HASH(m), where HASH is a cryptographic hash function, such as SHA-1.

Let z be the [, n leftmost bits of €, where L 5, Is the bit length of the group order 17.
Select a random integer J from [1, n— 1].

Calculate the curve point (;1'11 yl) =k xG. k : ephemeral key]
Calculate 1 = 14 mod n.fy = (), go back to step 3.

Calcmate[;_.; — };_1(3 41 rd_A) mod n|fs = (). go back to step 3.
The signature is the pair (?’. 5}.

N o R LN =

http://en.wikipedia.org/wiki/Elliptic_ Curve DSA

21

http://en.wikipedia.org/wiki/Elliptic_Curve_DSA
http://en.wikipedia.org/wiki/Elliptic_Curve_DSA

ECDSA Verification & 3

For Bob to authenticate Alice's signature, he must have a copy of her public-key curve point Q 4. Bob can verify
Q_ 4 Is a valid curve point as follows:

1. Check that Q 4 is not equal to the identity element (), and its coordinates are otherwise valid
2. Check that () 4 lies on the curve

3. Check thatn * QA =0,
After that, Bob follows these steps:

Verify that 1 and § are integers in [1, n — 1]. If not, the signature is invalid.

Calculate ¢ = H ASI—I(m) where HASH is the same function used in the signature generation.
Let 2 be the [, leftmost bits of €.

Calculate 3y = s~ mod n-

Calculate Uy = zw mod 7 and U =T1UW mgd -

Calculate the curve |;:u::-int(;r_-1 . yl) =u * G +uy *Q 4

7. The signature is valid if 7 = 1, (n]{]d n } invalid otherwise.

S i

Note that using Straus's algornthm (also known as Shamir's trick) a sum of two scalar multiplications
Uy * G+ Uy * QA can be calculated faster than with two scalar multiplications_™

http://en.wikipedia.org/wiki/Elliptic_ Curve DSA

22

http://en.wikipedia.org/wiki/Elliptic_Curve_DSA
http://en.wikipedia.org/wiki/Elliptic_Curve_DSA

Ephemeral Key & RNG

* The entropy, secrecy, and uniqueness of the DSA / ECDSA random

ephemeral key k is critical

* Violating any one of the above three requirements can reveal the entire private key to
an attacker

* Using the same value twice (even while keeping k secret), using a predictable value, or
leaking even a few bits of k in each of several signatures, is enough to break DSA /ECDSA

* [December 2010] The ECDSA private key used by Sony to sign
software for the PlayStation 3 game console was recovered,
because Sony implemented k as static instead of random

Ephemeral Key & RNG

e [August 2013] Bugs in some implementations of the Java class SecureRandom
sometimes generated collisions in k, allowing in stealing bitcoins from the
containing wallet on Android app

e [August 2013] 158 accounts had used the same signature nonces r value in
more than one signature. The total remaining balance across all 158 accounts
is only 0.00031217 BTC. The address, 1HKywxiL4JzigXrzLKhmB6a74ma6kxbSDj,
appears to have stolen bitcoins from 10 of these addresses. This account made
11 transactions between March and October 2013. These transactions have
netted this account over 59 bitcoins.

* This issue can be prevented by deriving k deterministically from the private key
and the message hash, as described by RFC 6979

http://www.theregister.co.uk/2013/08/12/android_bug batters bitcoin wallets http://eprint.iacr.org/2013/734.pdf

http://www.theregister.co.uk/2013/08/12/android_bug_batters_bitcoin_wallets
http://www.theregister.co.uk/2013/08/12/android_bug_batters_bitcoin_wallets
http://eprint.iacr.org/2013/734.pdf
http://eprint.iacr.org/2013/734.pdf
http://eprint.iacr.org/2013/734.pdf

Side-Channel Attacks = if g st

-3.0

-40

uuuuuu

-5,0 -1
-05 45 95 145 195 245 25 M5 385 445 435

ms Pico-Technologie www.picotech.com

D (double) or A (add) depends on the bits of Private Key

Image Courtesy https://eprint.iacr.org/2015/354.pdf 25

https://eprint.iacr.org/2015/354.pdf
https://eprint.iacr.org/2015/354.pdf

ECDSA Key Extraction from Mobile Devices

Fully extract secret signing keys from OpenSSL and CoreBitcoin running on iOS devices.

26

Sourse: https://www.tau.ac.il/~tromer/mobilesc

https://www.tau.ac.il/~tromer/mobilesc
https://www.tau.ac.il/~tromer/mobilesc
https://www.tau.ac.il/~tromer/mobilesc

CoolWallet for Hardware Signing

Making a transaction
Sending signed transaction to
paired device Battery
Conected to paired device

E-paper

OTP comfirmed v OlP2 i3 tic

One Time Password

Authorize transaction

Bluetooth Low Energy or
Near Field Communication

% & ZF Infineon

SLE97 % > & 7

27

Quantum Resistant Suite

* |In August, 2015, NSA announced that it is planning to transition "in
the not too distant future" to a new cipher suite that is resistant to
guantum attacks.

* NSA advised: "For those partners and vendors that have not yet
made the transition to Suite B algorithms, we recommend not
making a significant expenditure to do so at this point but instead to
prepare for the upcoming quantum resistant algorithm transition.”

* Prediction: Post-Quantum blockchains are appearing soon

https://en.wikipedia.org/wiki/NSA Suite B _Cryptography

https://en.wikipedia.org/wiki/NSA_Suite_B_Cryptography

Collision Resistance of SHA-2, -3 Hash Functions

* Blockchains depend on collision-resistant hash functions such as
SHA-2 and SHA-3 for consensus (proof of work), wallet generation,
and transaction signing. A successful pre-image attack would be a
serious problem.

* What is the chance of a successful pre-image attack on SHA-2 and
SHA-3 with the help of quantum computation?

 Attacks on both functions require on the order of 212 queries in a
gquantum block-box model, hence suggesting than an attack is 275
billion times more expensive than a simple query analysis would
suggest.

Source: Amy, Di Matteo, Gheorghiu, et. al., “Estimating the Cost of Generic Quantum Pre-Image Attacks on SHA-2 and SHA-3.”

/ero-Knowledge Proofs for Blockchain Privacy

(a) Merke tree over (cm,,cm,,...) (b) coin rt = Merkle-tree root
rt c ((K.)) cm = coin commitment
= ank, yV,P, ¥, s,Cm .
? pPenc P sn = serial number
CRH (c) coin commitment (d) serial number Vv = coinvalue
A X cm sn r,s = commitment rand.

[

CRH| |CRH p serial number rand.
Yok 4 COMM PRFs (apk:Pkene) = address public key

CRH (agk:SKkene) = address secret key
v
CRH CRH COMM
X X
CRH| |CRH| |CRH| |CRrRH p

R A A A S L L e

Fig. 1: (a) Illustration of the CRH-based Merkle tree over the list CMList of coin commitments. (b) A coin c. (¢) Illustration of the structure
of a coin commitment cm. (d) Illustration of the structure of a coin serial number sn.

Source: Ben-Sasson, Chiesa, Garman, et. al., “Zerocash: Decentralized Anonymous Payment from Bitcoin.”

Non-Crytpowise Security

Consensus Algorithms

* Consensus tolerating Byzantine failures must satisfy:
* Termination — every correct process decides some value.

 Validity —if all correct processes propose the same value v, then all correct
processes decide v.

* Integrity — if a correct process decides v, then v must have been proposed by
some correct process.

* Agreement — every correct process must agree on the same value.

COMMANDER OMMANDER

“attack”’ \ /

Fig. 1. Lieutenant 2 a traitor. Fig. 2. The commander a traitor

\

Sources: Lamport, L., Shostak, R., Pease, M., “The Byzantine Generals Problem.”
Castro, M., Liskov, B., “Practical Byzantine Fault Tolerance and Proactive Recovery.”

A Comparison of Consensus Algorithms

* Decentralized Control —anyone is able to participate and no central authority dictates whose
approval is required for consensus.

* Low Latency — consensus can be reached in a few seconds.
* Flexible Trust — users have the freedom to trust any combination of parties they see fit.

* Asymptotic Security — safety rests on digital signatures and hash families whose parameters can
be tuned to protect against adversaries with unlimited computing power.

Algorithm Decentralized Low Latency Flexible Trust Asymptotic
Control Security

Proof of Work

Proof of Stake v maybe maybe
PBFT v v 4
Tendermint 4 v v

Source: Mazieres, David, “The Stellar Consensus Protocol: A Federated Model for Internet-level Consensus.” 3

Smart Contract Failures

The Dao - Reentry exploit

The "payout index without the underscore” ponzi

The casino with a public RNG seed

Governmental (1100 ETH stuck because payout exceeds gas limit)

5800 ETH swiped (by whitehats) from an ETH-backed ERC20 token - MakerDAO

The King of the Ether game

Rubixi (Fees stolen because the constructor function had an incorrect name, allowing anyone to
become the owner)

Rock paper scissors trivially cheatable because the first to move shows their hand

Various instances of funds lost because a recipient contained a fallback function that consumed
more than 2300 gas, causing sends to them to fail.

Various instances of call stack limit exceptions.

(source: https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/ - Vitalik Buterin)

The DAO Reentrancy Bug

// THIS CONTRACT CONTAINS A BUG - DO NOT USE contract Recipient {
contract Fund { uint counter;
/// Mapping of ether shares of the contract. function () {
mapping (address => uint) shares; if (counter < 10) {
/// Withdraw your share. Fund (msg.sender) .withdraw() ;

function withdraw () { counter+=1;
if (msg.sender.call.value(shares[msg.sender]) ())
shares[msg.sender] =

Source: Jentzsch, Christoph, “Smart Contract Security and Decentralized Governance.”
35

Establishing Security Patterns

1024 call stack depth -> always check return values of each call

Block gas limit -> No arbitrary length loops

Reentry exploit -> update state before executing CALLs

Ether sent to contract without contract invocation -> be careful with Invariants
Specify right amount of gas (SEND vs CALL)

Block timestamp can be manipulated -> block.number are safer

Tx.orgin vs msg.sender (pishing attacks)

Important actor stops in N-party contract (chess)

All data is public

Literature: https://github.com/ConsenSys/smart-contract-best-practices

http://solidity.readthedocs.io/en/latest/security-considerations.html

Smart Contract Governance

1. A single authority -> may be safe, needs a lot of trust
2. The token holders (if existent) -> usually slow, but distributes trust

Other options?

e Bad: use existent trusted multisig (foundation) -> not nice to force someone to
do it
e (Good: Decentralized escape hatches

http://hackingdistributed.com/2016/07/11/decentralized-escape-hatches-for-smart-
contracts/

Smart Contract Security Conclusions

* Practice prudent design (invariants, coverage, formal verification)

* Defense in depth (cap transaction amount, time delays, circuit
breakers)

* Design escape hatches (updateable contracts, multisig rescue)

- Keep smart contracts simple (only decentralize what absolutely
needs to be decentralized). We are still in the early days.

Miscellaneous Blockchain Exploits

* DAO Reentrancy Bug (>$60 million loss) — mitigated by hard fork, time
delays

* Bitfinex Compromise (>S60 million loss) — advanced persistent threat
* Mt. Gox (>$S400 million loss) — insider incompetence/fraud

* Bitstamp (S5 million loss) — social engineering

* Bitcoinica ($2 million loss) — insider incompetence/fraud

* Many others totaling over $1 billion in losses

Thank youl!

Image Courtesy https://www.ethereum.org/ether

40

https://www.ethereum.org/ether
https://www.ethereum.org/ether

